Transmission of data with orthogonal frequency division multiplexing technique for communication networks using GHz frequency band soliton carrier
نویسندگان
چکیده
Microring resonators (MRRs) can be used to generate optical millimetre-wave solitons with a broadband frequency of 40–60 GHz. Non-linear light behaviours within MRRs, such as chaotic signals, can be used to generate logic codes (digital codes). The soliton signals can be multiplexed and modulated with the logic codes using an orthogonal frequency division multiplexing (OFDM) technique to transmit the data via a network system. OFDM uses overlapping subcarriers without causing inter-carrier interference. It provides both a high data rate and symbol duration using frequency division multiplexing over multiple subcarriers within one channel. The results show that MRRs support both single-carrier and multi-carrier optical soliton pulses, which can be used in an OFDM based on whether fast Fourier transform or discrete wavelet transform transmission/receiver system. Localised ultra-short soliton pulses within frequencies of 50 and 52 GHz can be seen at the throughput port of the panda system with respect to full-width at half-maximum (FWHM) and free spectrum range of 5 MHz and 2 GHz, respectively. The soliton pulses with FWHMs of 10 MHz could be generated at the drop port. Therefore, transmission of data information can be performed via a communication network using soliton pulse carriers and an OFDM technique. www.ietdl.org IET Commun., pp. 1–10 doi: 10.1049/iet-com.2013.0077 1 & The Institution of Engineering and Technology 2014 E-mail: [email protected] , M. Ebrahimi I.S. Amiri1,3
منابع مشابه
Quadrature Amplitude Modulation All Optical Orthogonal Frequency Division Multiplexing-dense Wavelength Division Multiplexing-optical Wireless Communication System under Different Weather Conditions
This paper proposes an analytical model for evaluating the performance of dense wavelength division multiplexing (DWDM) for all optical orthogonal frequency division multiplexing (AO-OFDM) optical wireless channel. The investigated performance for proposed system is evaluated for the parameters bit error rate (BER) and Q factor .The constellation diagrams, and bit error rate (BER) of the recei...
متن کاملAn Efficient Hierarchical Modulation based Orthogonal Frequency Division Multiplexing Transmission Scheme for Digital Video Broadcasting
Due to the increase of users the efficient usage of spectrum plays an important role in digital terrestrial television networks. In digital video broadcasting, local and global content are transmitted by single frequency network and multifrequency network respectively. Multifrequency network support transmission of global content and it consumes large spectrum. Similarly local content are well ...
متن کاملSingle-Carrier Frequency-Domain Equalization for Orthogonal STBC over Frequency-Selective MIMO-PLC channels
In this paper we propose a new space diversity scheme for broadband PLC systems using orthogonal space-time block coding (OSTBC) transmission combined with single-carrier frequency-domain equalization (SC-FDE). To apply this diversity technique to PLC channels, we first propose a new technique for combining SC-FDE with OSTBCs applicable to all dispersive multipath channels impaired by impulsive...
متن کاملEmpirical Mode Decomposition based Adaptive Filtering for Orthogonal Frequency Division Multiplexing Channel Estimation
This paper presents an empirical mode decomposition (EMD) based adaptive filter (AF) for channel estimation in OFDM system. In this method, length of channel impulse response (CIR) is first approximated using Akaike information criterion (AIC). Then, CIR is estimated using adaptive filter with EMD decomposed IMF of the received OFDM symbol. The correlation and kurtosis measures are used to sel...
متن کاملAnalysis of the Performance Boundaries of Sub-1 GHz WLANs in the 920MHz ISM-Band
We explore the performance boundaries of sub1 GHz Wireless Local Area Networks (WLANs) and summarize the limitations of our proposed narrow-band WLAN system that uses carrier frequencies at 920 MHz with 1 MHz channel bandwidth. While there are several evaluation reports on WLAN testbeds available, no report is available that discusses the boundaries of narrow-band multiple-input multiple-output...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IET Communications
دوره 8 شماره
صفحات -
تاریخ انتشار 2014